Fossils tell us when organisms lived, as well as provide evidence for the progression and evolution of life on earth over millions of years. Fossils are the preserved remains or traces of animals, plants, and other organisms from the past. Fossils range in age from 10, to 3. The observation that certain fossils were associated with certain rock strata led 19th century geologists to recognize a geological timescale. Like extant organisms, fossils vary in size from microscopic, like single-celled bacteria, to gigantic, like dinosaurs and trees. Permineralization is a process of fossilization that occurs when an organism is buried.

Radiometric Age Dating



What Is Radioactive Dating, and How Does It Work?
Radiometric dating calculates an age in years for geologic materials by measuring the presence of a short-life radioactive element, e. The term applies to all methods of age determination based on nuclear decay of naturally occurring radioactive isotopes. Bates and Jackson To determine the ages in years of Earth materials and the timing of geologic events such as exhumation and subduction, geologists utilize the process of radiometric decay. Geologists use these dates to further define the boundaries of the geologic periods shown on the geologic time scale. Radiometric decay occurs when the nucleus of a radioactive atom spontaneously transforms into an atomic nucleus of a different, more stable isotope. This transformation happens via the emission of particles such as electrons known as beta decay and alpha particles. For instance, rubidium 87Rb , an unstable element, becomes strontium 87Sr , a stable element, via beta decay.


Radiometric Dating
Radiometric Dating - A Brief Explanation Radiometric dating is the primary dating scheme employed by scientists to determine the age of the earth. Radiometric dating techniques take advantage of the natural decay of radioisotopes. An isotope is one of two or more atoms which have the same number of protons in their nuclei, but a different number of neutrons.
The age of Earth is estimated to be 4. Following the development of radiometric age-dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old. It is hypothesised that the accretion of Earth began soon after the formation of the calcium-aluminium-rich inclusions and the meteorites. Because the time this accretion process took is not yet known, and predictions from different accretion models range from a few million up to about million years, the difference between the age of Earth and of the oldest rocks is difficult to determine.